教师名录
Peter David Lund,院士,芬兰阿尔托大学工程物理系教授、系主任,芬兰瑞典工程院院士,芬兰科学与人文科学院院士,国家“CJJX”、教育部“海外名师”、江苏省外专百人,东南大学教授、东南大学太阳能技术研究中心及东南大学储能联合研究中心首席科学家,江苏省能源转换及存储国际合作重点实验室主任(省教育厅),江苏省外国高级专家工作室主任(省科技厅);江苏省院士专家(国际双碳经济)产业创新中心主任(省科协)。在先进燃料电池,第三代太阳能电池,储能等领域为世界做出重要贡献。主持过多项欧盟项目、北欧理事会能源环境和气候重大创新团队项目以及芬兰国家技术局科研项目,发表了期刊文章520篇,包括Nature、Science等世界顶刊,出版著作二十余册,仅与东南大学太阳能研究中心已经合作发表论文180多篇,合作项目三十多项,其合作研究成果为地方经济新增产值超百亿。Lund教授凭借在新能源领域及中欧交流合作方面的杰出贡献,先后获得中国政府友谊奖、江苏省政府友谊奖、江苏省国际科学技术合作奖、金陵友谊奖等,先后受到国务院李克强总理(2020年)、李强总理(2025年)国务院丁薛祥副总理(2024年)和江苏省委书记、省长(2019年、2024年)的亲切接见。
(1) Yang, S.; Li, L. F.; Wang, B.; Zheng, Y. H.; Lund, P.; Wang, J.; Ding, Y. L. Modelling of radiative and convective heat transfer in an open cavity volumetric receiver for a 50-MWth beam-down integrated receiver-storage concentrating solar thermal system. Renew. Energy 2025, 242, 16. DOI: 10.1016/j.renene.2025.122457.
(2) Xia, R.; Wang, J.; Lund, P. D. Comprehensive performance analysis of an advanced power generation cycle for liquid hydrogen cold energy recovery. Oxf. Open Energy 2025, 4, 9. DOI: 10.1093/ooenergy/oiae020.
(3) Wang, H.; Hu, E. Y.; Zhu, B.; Yang, F.; Lund, P. H2 treatment benefit stable operation for ceramic fuel cells with NFMNa electrolyte at lower temperature. Renew. Energy 2025, 239, 10. DOI: 10.1016/j.renene.2024.122124.
(4) Wang, H.; Hu, E. Y.; Zhu, B.; Wang, J.; Lund, P. Enhancing ceramic fuel cells stability via anode lithium content regulation based on anode-assisted in-situ densification of electrolyte technology. Fuel 2025, 387, 9. DOI: 10.1016/j.fuel.2025.134357.
(5) Su, Z. Y.; Gu, S. Y.; Wang, J.; Lund, P. D. Improving ultra-short-term photovoltaic power forecasting using advanced deep-learning approach. Measurement 2025, 239, 18. DOI: 10.1016/j.measurement.2024.115405.
(6) Gong, J. H.; Li, Z. Y.; Wang, J.; Lund, P. D.; Cao, S. S. Research on single layer quasi-ordered air vortex inside flat plate solar collectors. Sol. Energy Mater. Sol. Cells 2025, 282, 10. DOI: 10.1016/j.solmat.2024.113398.
(7) Zhao, W. J.; Wang, J.; Wang, F. Z.; Li, M. T.; Asghar, M. I.; Zhu, B.; Lin, B.; Lund, P. Metallic heterostructure solid oxide fuel cells with robust performance output and durability. Fuel 2024, 375, 10. DOI: 10.1016/j.fuel.2024.132334.
(8) Zhao, W. J.; Lin, B.; Wang, H.; Wang, F.; Asghar, M. I.; Wang, J.; Zhu, B.; Lund, P. A half-metallic heterostructure fuel cell with high performance. Renew. Energy 2024, 232, 9. DOI: 10.1016/j.renene.2024.121006.
(9) Zhao, W. J.; Lin, B.; Li, X. X.; Wang, F. Z.; Asghar, M. I.; Wang, J.; Zhu, B.; Lund, P. An industrial mixed rare-earth oxide fuel cell with low cost and high electrochemical performance. Ceram. Int. 2024, 50 (7), 10007-10015. DOI: 10.1016/j.ceramint.2023.12.297.
(10) Yu, Y.; Shah, M.; Wang, H.; Cheng, X. M.; Guo, L. J.; Huang, J. B.; Lund, P.; Zhu, B. Synergistic Proton and Oxygen Ion Transport in Fluorite Oxide-Ion Conductor. Energy Mater. Adv. 2024, 5, 11. DOI: 10.34133/energymatadv.0081.
(11) Yang, S.; Wang, J.; Lund, P. D. Integration of solar receiver and thermal energy storage into a single unit in concentrating solar plants. Oxf. Open Energy 2024, 3, 4. DOI: 10.1093/ooenergy/oiad016.
(12) Yang, K.; He, Y. Y.; Du, N.; Zhu, N.; Chen, Y. Z.; Wang, J.; Lund, P. D.; Cao, L. X. Exergy and exergoeconomic analyses of multi-energy complementary system based on different natural gas and biogas co-firing ratios considering carbon tax. Process Saf. Environ. Protect. 2024, 184, 1206-1221. DOI: 10.1016/j.psep.2024.02.061.
(13) Yang, K.; He, Y. Y.; Du, N.; Yan, P.; Zhu, N.; Chen, Y. Z.; Wang, J.; Lund, P. D. Exergy, exergoeconomic, and exergoenvironmental analyses of novel solar-and biomass-driven trigeneration system integrated with organic Rankine cycle. Energy 2024, 301, 25. DOI: 10.1016/j.energy.2024.131605.
(14) Yang, K.; Chen, Y. Z.; Li, C. J.; Wang, J.; Lund, P. D. Dynamic price optimization of a solar integrated cogeneration system considering uncertainties of building demands. Renew. Energy 2024, 223, 14. DOI: 10.1016/j.renene.2024.120074.
(15) Wan, S.; Shah, M.; Wang, H.; Lund, P. D.; Zhu, B. Exceptionally high proton conductivity in Eu2O3 by proton-coupled electron transfer mechanism. iScience 2024, 27 (1), 12. DOI: 10.1016/j.isci.2023.108612.
(16) Rauf, S.; Hanif, M. B.; Wali, F.; Tayyab, Z.; Zhu, B.; Mushtaq, N.; Yang, Y. T.; Khan, K.; Lund, P. D.; Motola, M.; et al. Highly Active Interfacial Sites in SFT-SnO2 Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentally. Energy Environ. Mater. 2024, 7 (3), 14. DOI: 10.1002/eem2.12606.
(17) Qiu, Y. D.; Wang, J. K.; Han, J.; Chen, Y. Z.; Wang, J.; Lund, P. D. Comparisons and optimization of two absorption chiller types by considering heat transfer area, exergy and economy as single-objective functions. Clean Energy 2024, 8 (1), 55-65. DOI: 10.1093/ce/zkad086.
(18) Li, X. X.; Yousaf, M.; Hu, E. Y.; Wang, J.; Xia, C.; Dong, W. J.; Wang, F. Z.; Lund, P.; Zhu, B. Medium-entropy oxide (Ce0.25Sm0.25La0.25Gd0.25)2O3-8 as promising electrolyte for low-temperature solid oxide fuel cells. Ceram. Int. 2024, 50 (3), 4523-4532. DOI: 10.1016/j.ceramint.2023.11.189.
(19) Li, X. X.; Hu, E. Y.; Wang, F. Z.; Lund, P. D.; Wang, J. N-N Heterostructure Sm2O3/ZnO Electrolyte with Enhanced Proton Conduction for Fuel Cell Application. ACS Appl. Energ. Mater. 2024, 7 (10), 4629-4638. DOI: 10.1021/acsaem.4c00769.
(20) Li, X. X.; Hu, E. Y.; Wang, F. Z.; Lund, P.; Zhu, B.; Wang, J. Proton conductor NASICON-structure Li1+xCdx/2Zr2-x/2(PO4)3 as solid electrolyte for intermediate-temperature fuel cells. J. Mater. Chem. A 2024, 12 (8), 4796-4805. DOI: 10.1039/d3ta05182j.
(21) Huang, B. K.; Yang, S. M.; Xu, J. Y.; Hao, M. L.; Sun, Y. W.; Wang, J.; Lund, P. D. Analyzing competing effects between heat transfer area and natural convection to enhance heat transfer in latent heat storage. J. Energy Storage 2024, 76, 12. DOI: 10.1016/j.est.2023.109882.
(22) Gong, J. H.; Yang, C.; Wang, J.; Lund, P. D. Comparative study of optical and thermal model for a large-aperture parabolic trough concentrator with smaller diameter absorber tube bundle. Energy Rep. 2024, 11, 2526-2534. DOI: 10.1016/j.egyr.2024.01.077.
(23) Chen, Y. Z.; Yang, K. F.; Guo, W. M.; Wang, J. R.; Du, N.; Yang, K.; Lund, P. D. Optimizing solar full-spectrum integration in a methanol-driven district energy system: A comprehensive ecological assessment. J. Clean Prod. 2024, 478, 13. DOI: 10.1016/j.jclepro.2024.143912.
(24) Chen, Y. Z.; Guo, W. M.; Zhang, T. H.; Lund, P. D.; Wang, J.; Yang, K. Carbon and economic prices optimization of a solar-gas coupling energy system with a modified non-dominated sorting genetic algorithm considering operating sequences of water-cooled chillers. Energy 2024, 301, 15. DOI: 10.1016/j.energy.2024.131573.
(25) Chen, Y. Z.; Guo, W. M.; Lund, P. D.; Du, N.; Yang, K.; Wang, J. Configuration optimization of a wind-solar based net-zero emission tri-generation energy system considering renewable power and carbon trading mechanisms. Renew. Energy 2024, 232, 12. DOI: 10.1016/j.renene.2024.121086.
(26) Cai, K.; Han, Y. F.; Xia, R.; Wu, J. M.; Wang, J.; Lund, P. D. Gravity Energy Storage: A Review on System Types, Techno-Economic Assessment and Integration With Renewable Energy. Wiley Interdiscip. Rev. Energy Environ. 2024, 13 (6), 14, Review. DOI: 10.1002/wene.543.
(27) Bibi, B.; Nazar, A.; Zhu, B.; Yang, F.; Yousaf, M.; Raza, R.; Shah, M.; Kim, J. S.; Afzal, M.; Lei, Y. P.; et al. Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells. Adv. Powder Mater. 2024, 3 (6), 25. DOI: 10.1016/j.apmate.2024.100231.
(28) Zhu, B.; Fan, L. D.; Mushtaq, N.; Raza, R.; Sajid, M.; Wu, Y.; Lin, W. F.; Kim, J. S.; Lund, P. D.; Yun, S. N. Semiconductor Electrochemistry for Clean Energy Conversion and Storage (vol 4, pg 757, 2021). Electrochem. Energy Rev. 2023, 6 (1), 1, Correction. DOI: 10.1007/s41918-022-00130-0.
(29) Xu, Z. C.; Wang, J.; Lund, P. D.; Zhang, Y. M. Analysis of energy consumption for electric buses based on low-frequency real-world data. Transport. Res. Part D-Transport. Environ. 2023, 122, 21. DOI: 10.1016/j.trd.2023.103857.
(30) Wang, J. P.; Lu, Y. Z.; Mushtaq, N.; Shah, M.; Rauf, S.; Lund, P. D.; Asghar, M. I. Novel LaFe2O4 spinel structure with a large oxygen reduction response towards protonic ceramic fuel cell cathode. J. Rare Earths 2023, 41 (3), 413-421. DOI: 10.1016/j.jre.2022.04.031.
(31) Shah, M.; Lund, P. D.; Zhu, B. Perspective Toward next-generation fuel cell materials. iScience 2023, 26 (6), 18, Review. DOI: 10.1016/j.isci.2023.106869.
(32) Shah, M.; Lu, Y. Z.; Mushtaq, N.; Yousaf, M.; Lund, P. D.; Asghar, M. I.; Zhu, B. Designing Gadolinium-doped ceria electrolyte for low temperature electrochemical energy conversion. Int. J. Hydrog. Energy 2023, 48 (37), 12. DOI: 10.1016/j.ijhydene.2022.12.314.
(33) Shah, M.; Lu, Y. Z.; Mushtaq, N.; Yousaf, M.; Akbar, M.; Rauf, S.; Dong, Y. W.; Lund, P. D.; Zhu, B.; Asghar, M. I. Enabling high ionic conductivity in semiconductor electrolyte membrane by surface engineering and band alignment for LT-CFCs. J. Membr. Sci. 2023, 668, 12. DOI: 10.1016/j.memsci.2022.121264.
(34) Lu, Y. Z.; Shah, M.; Mushtaq, N.; Yousaf, M.; Akbar, N.; Arshad, N.; Irshad, M. S.; Lund, P. D.; Zhu, B.; Asghar, I. Semiconductor Heterostructure (SFT-SnO2) Electrolyte with Enhanced Ionic Conduction for Ceramic Fuel Cells. ACS Appl. Energ. Mater. 2023, 6 (12), 6518-6531. DOI: 10.1021/acsaem.3c00442.
(35) Li, Z.; Hu, J. K.; Han, Y. F.; Li, H. F.; Wang, J.; Lund, P. D. Parameter identification and generality analysis of photovoltaic module dual-diode model based on artificial hummingbird algorithm. Clean Energy 2023, 7 (6), 1219-1232. DOI: 10.1093/ce/zkad066.
(36) Kuang, R.; Du, B.; Lund, P. D.; Wang, J. Improving performance prediction of evacuated tube solar collector through convolutional neural network method. Therm. Sci. Eng. Prog. 2023, 39, 16. DOI: 10.1016/j.tsep.2023.101717.
(37) Jing-hu, G.; Yong, L.; Jun, W.; Lund, P. Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology. Energy 2023, 268, 11. DOI: 10.1016/j.energy.2023.126640.
(38) Huang, B. K.; Yang, S. M.; Li, X. X.; Wang, J.; Lund, P. D. Strengthening of melting-solidification process in latent heat storage through sine wave shaped fins. J. Energy Storage 2023, 66, 15. DOI: 10.1016/j.est.2023.107494.
(39) Hu, J. K.; Teng, K.; Li, C. J.; Li, X. P.; Wang, J.; Lund, P. D. Review of recent water photovoltaics development. Oxf. Open Energy 2023, 2, 10. DOI: 10.1093/ooenergy/oiad005.
(40) Hu, E. Y.; Wang, J.; Ma, L. Q.; Yousaf, M.; Wang, F. Z.; Zhu, B.; Yang, W. X.; Lund, P. Phase Evolution and Electrochemical Properties of Nanometric Samarium Oxide for Stable Protonic Ceramic Fuel Cells. ChemPhysChem 2023, 24 (3), 9. DOI: 10.1002/cphc.202200656.
(41) Gong, J. H.; Zhang, Z. P.; Sun, Z. H.; Wang, Y. G.; Wang, J.; Lund, P. D. Thermal and thermo-mechanical analysis of a novel pass-through all-glass evacuated collector tube by combining experiment with numerical simulation. Energy 2023, 277, 8. DOI: 10.1016/j.energy.2023.127630.
(42) Gong, J. H.; Sun, Z. H.; Wang, J.; Lund, P. D. Performance studies of novel all-glass heat pipe evacuated collector tube integrating numerical simulation and experiment method. Sol. Energy 2023, 253, 491-500. DOI: 10.1016/j.solener.2023.02.028.
(43) Yang, S.; Wang, B.; Lund, P. D.; Wang, J. Optimization of Inert Gas Feeding Strategy in a Fixed-Bed Reactor for Efficient Water Splitting Via Solar-Driven Thermal Reduction of Nonstoichiometric CeO2. J. Sol. Energy Eng. Trans.-ASME 2022, 144 (5), 11. DOI: 10.1115/1.4054394.
(44) Xu, J. Z.; Wang, J.; Chen, Y. Z.; Xu, Z. C.; Lund, P. D. Thermo-ecological cost optimization of a solar thermal and photovoltaic integrated energy system considering energy level. Sustain. Prod. Consump. 2022, 33, 298-311. DOI: 10.1016/j.spc.2022.07.011.
(45) Wang, J.; Lund, P. D. Review of Recent Offshore Photovoltaics Development. Energies 2022, 15 (20), 14, Review. DOI: 10.3390/en15207462.
(46) Shah, M.; Lu, Y. Z.; Mushtaq, N.; Yousaf, M.; Rauf, S.; Asghar, M. I.; Lund, P. D.; Zhu, B. Perovskite Al-SrTiO3 semiconductor electrolyte with superionic conduction in ceramic fuel cells. Sustain. Energ. Fuels 2022, 6 (16), 3794-3805. DOI: 10.1039/d2se00643j.
(47) Shah, M.; Lu, Y. Z.; Mushtaq, N.; Rauf, S.; Yousaf, M.; Asghar, M. I.; Lund, P. D.; Zhu, B. Demonstrating the potential of iron-doped strontium titanate electrolyte with high-performance for low temperature ceramic fuel cells. Renew. Energy 2022, 196, 901-911. DOI: 10.1016/j.renene.2022.06.154.
(48) Ma, L. Q.; Hu, E. Y.; Yousaf, M.; Lu, Y. K.; Wang, J.; Wang, F. Z.; Lund, P. Phase structure-dependent low temperature ionic conductivity of Sm2O3. Appl. Phys. Lett. 2022, 121 (10), 7. DOI: 10.1063/5.0104790.
(49) Lund, P. D.; Anderson, C. L.; Figueiredo, M. C.; Mancarella, P.; Neij, L.; Wang, J.; Neenan, J. Introducing Oxford Open Energy and the energy quest. Oxf. Open Energy 2022, 1, 3. DOI: 10.1093/ooenergy/oiab001.
(50) Lu, Y. Z.; Shah, M.; Mushtaq, N.; Yousaf, M.; Lund, P. D.; Zhu, B.; Asghar, M. I. A-site deficient semiconductor electrolyte Sr1-xCoxFeO3-δ for low-temperature (450-550 °C) solid oxide fuel cells. RSC Adv. 2022, 12 (38), 24480-24490. DOI: 10.1039/d2ra03823d.
(51) Lu, Y. Z.; Mushtaq, N.; Shah, M.; Irshad, M. S.; Rauf, S.; Xia, C.; Yousaf, M.; Raza, R.; Lund, P. D.; Zhu, B. Improved self-consistency and oxygen reduction activity of CaFe2O4 for protonic ceramic fuel cell by porous NiO-foam support. Renew. Energy 2022, 199, 1451-1460. DOI: 10.1016/j.renene.2022.09.048.
(52) Lu, Y. K.; Hu, E. Y.; Yousaf, M.; Ma, L. Q.; Wang, J.; Wang, F. Z.; Lund, P. NASICON-Type Lithium-Ion Conductor Materials with High Proton Conductivity Enabled by Lithium Vacancies. Energy Fuels 2022, 36 (24), 15154-15164. DOI: 10.1021/acs.energyfuels.2c03371.
(53) Li, X. X.; Yang, S.; Wang, J.; Lund, P. D. High-temperature two-layer integrated receiver storage for concentrating solar power systems. Oxf. Open Energy 2022, 2, 13. DOI: 10.1093/ooenergy/oiac012.
(54) Huang, B. K.; Yang, S. M.; Wang, J.; Lund, P. D. Optimizing the shape of PCM container to enhance the melting process. Oxf. Open Energy 2022, 1, 10. DOI: 10.1093/ooenergy/oiab006.
(55) Hu, J. K.; Teng, K.; Qiu, Y. D.; Chen, Y. Z.; Wang, J.; Lund, P. Thermodynamic and Economic Performance Assessment of Double-Effect Absorption Chiller Systems with Series and Parallel Connections. Energies 2022, 15 (23), 17. DOI: 10.3390/en15239105.
(56) Hu, E. Y.; Zhao, W. J.; Jiang, Z.; Wang, F. Z.; Wang, J.; Zhu, B.; Lund, P. Unveiling the role of lithium in cerium oxide based ceramic fuel cells employing lithium compounds as the anode. Phys. Chem. Chem. Phys. 2022, 24 (38), 23587-23592. DOI: 10.1039/d2cp02445d.
(57) Hu, E. Y.; Wang, J.; Yousaf, M.; Wang, F. Z.; Zhu, B.; Lund, P. D. Sodium-Doped Samarium Oxide Electrolytes for Avoiding the Lithiation-Induced Interface Degradation of Ni0.8Co0.15Al0.05LiO2 Electrode-Based Ceramic Fuel Cells br. ACS Appl. Energ. Mater. 2022, 5 (11), 13895-13902. DOI: 10.1021/acsaem.2c02540.
(58) Hu, E. Y.; Wang, F. Z.; Yousaf, M.; Wang, J.; Lund, P.; Wang, J. P.; Zhu, B. Synergistic effect of sodium content for tuning Sm2O3 as a stable electrolyte in proton ceramic fuel cells. Renew. Energy 2022, 193, 608-616. DOI: 10.1016/j.renene.2022.04.152.
(59) Gong, J. H.; Wang, J. Z.; Xiaoli, H.; Li, Y.; Jian, H.; Wang, J.; Lund, P. D.; Gao, C. Y. Optical, thermal and thermo-mechanical model for a larger-aperture parabolic trough concentrator system consisting of a novel flat secondary reflector and an improved absorber tube. Sol. Energy 2022, 240, 376-387. DOI: 10.1016/j.solener.2022.05.044.
(60) Du, B.; Lund, P. D.; Wang, J. Improving the accuracy of predicting the performance of solar collectors through clustering analysis with artificial neural network models. Energy Rep. 2022, 8, 3970-3981. DOI: 10.1016/j.egyr.2022.03.013.
(61) Chen, Y. Z.; Xu, Z. C.; Wang, J.; Lund, P. D.; Han, Y. F.; Cheng, T. H. Multi-objective optimization of an integrated energy system against energy, supply-demand matching and exergo-environmental cost over the whole life-cycle. Energy Conversion and Management 2022, 254, 12. DOI: 10.1016/j.enconman.2021.115203.
(62) Chen, Y. Z.; Xu, J. Z.; Wang, J.; Lund, P. D.; Wang, D. W. Configuration optimization and selection of a photovoltaic-gas integrated energy system considering renewable energy penetration in power grid. Energy Conversion and Management 2022, 254, 15. DOI: 10.1016/j.enconman.2022.115260.
(63) Chen, Y. Z.; Xu, J. Z.; Wang, J.; Lund, P. D. Optimization of a weather-based energy system for high cooling and low heating conditions using different types of water-cooled chiller. Energy 2022, 252, 14. DOI: 10.1016/j.energy.2022.124094.
(64) Chen, Y. Z.; Li, X. X.; Hua, H. L.; Lund, P. D.; Wang, J. Exergo-environmental cost optimization of a solar-based cooling and heating system considering equivalent emissions of life-cycle chain. Energy Conversion and Management 2022, 258, 14. DOI: 10.1016/j.enconman.2022.115534.
(65) Chen, Y. Z.; Hua, H. L.; Xu, J. Z.; Wang, J.; Lund, P. D.; Han, Y. F.; Cheng, T. H. Energy, environmental-based cost, and solar share comparisons of a solar driven cooling and heating system with different types of building. Appl. Therm. Eng. 2022, 211, 12. DOI: 10.1016/j.applthermaleng.2022.118435.
(66) Chen, Y. Z.; Hu, X. J.; Xu, W. T.; Xu, Q. L.; Wang, J.; Lund, P. D. Multi-objective optimization of a solar-driven trigeneration system considering power-to-heat storage and carbon tax. Energy 2022, 250, 12. DOI: 10.1016/j.energy.2022.123756.
Peter David Lund,院士,芬兰阿尔托大学工程物理系教授、系主任,芬兰瑞典工程院院士,芬兰科学与人文科学院院士,国家“CJJX”、教育部“海外名师”、江苏省外专百人,东南大学教授、东南大学太阳能技术研究中心及东南大学储能联合研究中心首席科学家,江苏省能源转换及存储国际合作重点实验室主任(省教育厅),江苏省外国高级专家工作室主任(省科技厅);江苏省院士专家(国际双碳经济)产业创新中心主任(省科协)。在先进燃料电池,第三代太阳能电池,储能等领域为世界做出重要贡献。主持过多项欧盟项目、北欧理事会能源环境和气候重大创新团队项目以及芬兰国家技术局科研项目,发表了期刊文章520篇,包括Nature、Science等世界顶刊,出版著作二十余册,仅与东南大学太阳能研究中心已经合作发表论文180多篇,合作项目三十多项,其合作研究成果为地方经济新增产值超百亿。Lund教授凭借在新能源领域及中欧交流合作方面的杰出贡献,先后获得中国政府友谊奖、江苏省政府友谊奖、江苏省国际科学技术合作奖、金陵友谊奖等,先后受到国务院李克强总理(2020年)、李强总理(2025年)国务院丁薛祥副总理(2024年)和江苏省委书记、省长(2019年、2024年)的亲切接见。
(1) Yang, S.; Li, L. F.; Wang, B.; Zheng, Y. H.; Lund, P.; Wang, J.; Ding, Y. L. Modelling of radiative and convective heat transfer in an open cavity volumetric receiver for a 50-MWth beam-down integrated receiver-storage concentrating solar thermal system. Renew. Energy 2025, 242, 16. DOI: 10.1016/j.renene.2025.122457.
(2) Xia, R.; Wang, J.; Lund, P. D. Comprehensive performance analysis of an advanced power generation cycle for liquid hydrogen cold energy recovery. Oxf. Open Energy 2025, 4, 9. DOI: 10.1093/ooenergy/oiae020.
(3) Wang, H.; Hu, E. Y.; Zhu, B.; Yang, F.; Lund, P. H2 treatment benefit stable operation for ceramic fuel cells with NFMNa electrolyte at lower temperature. Renew. Energy 2025, 239, 10. DOI: 10.1016/j.renene.2024.122124.
(4) Wang, H.; Hu, E. Y.; Zhu, B.; Wang, J.; Lund, P. Enhancing ceramic fuel cells stability via anode lithium content regulation based on anode-assisted in-situ densification of electrolyte technology. Fuel 2025, 387, 9. DOI: 10.1016/j.fuel.2025.134357.
(5) Su, Z. Y.; Gu, S. Y.; Wang, J.; Lund, P. D. Improving ultra-short-term photovoltaic power forecasting using advanced deep-learning approach. Measurement 2025, 239, 18. DOI: 10.1016/j.measurement.2024.115405.
(6) Gong, J. H.; Li, Z. Y.; Wang, J.; Lund, P. D.; Cao, S. S. Research on single layer quasi-ordered air vortex inside flat plate solar collectors. Sol. Energy Mater. Sol. Cells 2025, 282, 10. DOI: 10.1016/j.solmat.2024.113398.
(7) Zhao, W. J.; Wang, J.; Wang, F. Z.; Li, M. T.; Asghar, M. I.; Zhu, B.; Lin, B.; Lund, P. Metallic heterostructure solid oxide fuel cells with robust performance output and durability. Fuel 2024, 375, 10. DOI: 10.1016/j.fuel.2024.132334.
(8) Zhao, W. J.; Lin, B.; Wang, H.; Wang, F.; Asghar, M. I.; Wang, J.; Zhu, B.; Lund, P. A half-metallic heterostructure fuel cell with high performance. Renew. Energy 2024, 232, 9. DOI: 10.1016/j.renene.2024.121006.
(9) Zhao, W. J.; Lin, B.; Li, X. X.; Wang, F. Z.; Asghar, M. I.; Wang, J.; Zhu, B.; Lund, P. An industrial mixed rare-earth oxide fuel cell with low cost and high electrochemical performance. Ceram. Int. 2024, 50 (7), 10007-10015. DOI: 10.1016/j.ceramint.2023.12.297.
(10) Yu, Y.; Shah, M.; Wang, H.; Cheng, X. M.; Guo, L. J.; Huang, J. B.; Lund, P.; Zhu, B. Synergistic Proton and Oxygen Ion Transport in Fluorite Oxide-Ion Conductor. Energy Mater. Adv. 2024, 5, 11. DOI: 10.34133/energymatadv.0081.
(11) Yang, S.; Wang, J.; Lund, P. D. Integration of solar receiver and thermal energy storage into a single unit in concentrating solar plants. Oxf. Open Energy 2024, 3, 4. DOI: 10.1093/ooenergy/oiad016.
(12) Yang, K.; He, Y. Y.; Du, N.; Zhu, N.; Chen, Y. Z.; Wang, J.; Lund, P. D.; Cao, L. X. Exergy and exergoeconomic analyses of multi-energy complementary system based on different natural gas and biogas co-firing ratios considering carbon tax. Process Saf. Environ. Protect. 2024, 184, 1206-1221. DOI: 10.1016/j.psep.2024.02.061.
(13) Yang, K.; He, Y. Y.; Du, N.; Yan, P.; Zhu, N.; Chen, Y. Z.; Wang, J.; Lund, P. D. Exergy, exergoeconomic, and exergoenvironmental analyses of novel solar-and biomass-driven trigeneration system integrated with organic Rankine cycle. Energy 2024, 301, 25. DOI: 10.1016/j.energy.2024.131605.
(14) Yang, K.; Chen, Y. Z.; Li, C. J.; Wang, J.; Lund, P. D. Dynamic price optimization of a solar integrated cogeneration system considering uncertainties of building demands. Renew. Energy 2024, 223, 14. DOI: 10.1016/j.renene.2024.120074.
(15) Wan, S.; Shah, M.; Wang, H.; Lund, P. D.; Zhu, B. Exceptionally high proton conductivity in Eu2O3 by proton-coupled electron transfer mechanism. iScience 2024, 27 (1), 12. DOI: 10.1016/j.isci.2023.108612.
(16) Rauf, S.; Hanif, M. B.; Wali, F.; Tayyab, Z.; Zhu, B.; Mushtaq, N.; Yang, Y. T.; Khan, K.; Lund, P. D.; Motola, M.; et al. Highly Active Interfacial Sites in SFT-SnO2 Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands: Envisioned Theoretically and Experimentally. Energy Environ. Mater. 2024, 7 (3), 14. DOI: 10.1002/eem2.12606.
(17) Qiu, Y. D.; Wang, J. K.; Han, J.; Chen, Y. Z.; Wang, J.; Lund, P. D. Comparisons and optimization of two absorption chiller types by considering heat transfer area, exergy and economy as single-objective functions. Clean Energy 2024, 8 (1), 55-65. DOI: 10.1093/ce/zkad086.
(18) Li, X. X.; Yousaf, M.; Hu, E. Y.; Wang, J.; Xia, C.; Dong, W. J.; Wang, F. Z.; Lund, P.; Zhu, B. Medium-entropy oxide (Ce0.25Sm0.25La0.25Gd0.25)2O3-8 as promising electrolyte for low-temperature solid oxide fuel cells. Ceram. Int. 2024, 50 (3), 4523-4532. DOI: 10.1016/j.ceramint.2023.11.189.
(19) Li, X. X.; Hu, E. Y.; Wang, F. Z.; Lund, P. D.; Wang, J. N-N Heterostructure Sm2O3/ZnO Electrolyte with Enhanced Proton Conduction for Fuel Cell Application. ACS Appl. Energ. Mater. 2024, 7 (10), 4629-4638. DOI: 10.1021/acsaem.4c00769.
(20) Li, X. X.; Hu, E. Y.; Wang, F. Z.; Lund, P.; Zhu, B.; Wang, J. Proton conductor NASICON-structure Li1+xCdx/2Zr2-x/2(PO4)3 as solid electrolyte for intermediate-temperature fuel cells. J. Mater. Chem. A 2024, 12 (8), 4796-4805. DOI: 10.1039/d3ta05182j.
(21) Huang, B. K.; Yang, S. M.; Xu, J. Y.; Hao, M. L.; Sun, Y. W.; Wang, J.; Lund, P. D. Analyzing competing effects between heat transfer area and natural convection to enhance heat transfer in latent heat storage. J. Energy Storage 2024, 76, 12. DOI: 10.1016/j.est.2023.109882.
(22) Gong, J. H.; Yang, C.; Wang, J.; Lund, P. D. Comparative study of optical and thermal model for a large-aperture parabolic trough concentrator with smaller diameter absorber tube bundle. Energy Rep. 2024, 11, 2526-2534. DOI: 10.1016/j.egyr.2024.01.077.
(23) Chen, Y. Z.; Yang, K. F.; Guo, W. M.; Wang, J. R.; Du, N.; Yang, K.; Lund, P. D. Optimizing solar full-spectrum integration in a methanol-driven district energy system: A comprehensive ecological assessment. J. Clean Prod. 2024, 478, 13. DOI: 10.1016/j.jclepro.2024.143912.
(24) Chen, Y. Z.; Guo, W. M.; Zhang, T. H.; Lund, P. D.; Wang, J.; Yang, K. Carbon and economic prices optimization of a solar-gas coupling energy system with a modified non-dominated sorting genetic algorithm considering operating sequences of water-cooled chillers. Energy 2024, 301, 15. DOI: 10.1016/j.energy.2024.131573.
(25) Chen, Y. Z.; Guo, W. M.; Lund, P. D.; Du, N.; Yang, K.; Wang, J. Configuration optimization of a wind-solar based net-zero emission tri-generation energy system considering renewable power and carbon trading mechanisms. Renew. Energy 2024, 232, 12. DOI: 10.1016/j.renene.2024.121086.
(26) Cai, K.; Han, Y. F.; Xia, R.; Wu, J. M.; Wang, J.; Lund, P. D. Gravity Energy Storage: A Review on System Types, Techno-Economic Assessment and Integration With Renewable Energy. Wiley Interdiscip. Rev. Energy Environ. 2024, 13 (6), 14, Review. DOI: 10.1002/wene.543.
(27) Bibi, B.; Nazar, A.; Zhu, B.; Yang, F.; Yousaf, M.; Raza, R.; Shah, M.; Kim, J. S.; Afzal, M.; Lei, Y. P.; et al. Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells. Adv. Powder Mater. 2024, 3 (6), 25. DOI: 10.1016/j.apmate.2024.100231.
(28) Zhu, B.; Fan, L. D.; Mushtaq, N.; Raza, R.; Sajid, M.; Wu, Y.; Lin, W. F.; Kim, J. S.; Lund, P. D.; Yun, S. N. Semiconductor Electrochemistry for Clean Energy Conversion and Storage (vol 4, pg 757, 2021). Electrochem. Energy Rev. 2023, 6 (1), 1, Correction. DOI: 10.1007/s41918-022-00130-0.
(29) Xu, Z. C.; Wang, J.; Lund, P. D.; Zhang, Y. M. Analysis of energy consumption for electric buses based on low-frequency real-world data. Transport. Res. Part D-Transport. Environ. 2023, 122, 21. DOI: 10.1016/j.trd.2023.103857.
(30) Wang, J. P.; Lu, Y. Z.; Mushtaq, N.; Shah, M.; Rauf, S.; Lund, P. D.; Asghar, M. I. Novel LaFe2O4 spinel structure with a large oxygen reduction response towards protonic ceramic fuel cell cathode. J. Rare Earths 2023, 41 (3), 413-421. DOI: 10.1016/j.jre.2022.04.031.
(31) Shah, M.; Lund, P. D.; Zhu, B. Perspective Toward next-generation fuel cell materials. iScience 2023, 26 (6), 18, Review. DOI: 10.1016/j.isci.2023.106869.
(32) Shah, M.; Lu, Y. Z.; Mushtaq, N.; Yousaf, M.; Lund, P. D.; Asghar, M. I.; Zhu, B. Designing Gadolinium-doped ceria electrolyte for low temperature electrochemical energy conversion. Int. J. Hydrog. Energy 2023, 48 (37), 12. DOI: 10.1016/j.ijhydene.2022.12.314.
(33) Shah, M.; Lu, Y. Z.; Mushtaq, N.; Yousaf, M.; Akbar, M.; Rauf, S.; Dong, Y. W.; Lund, P. D.; Zhu, B.; Asghar, M. I. Enabling high ionic conductivity in semiconductor electrolyte membrane by surface engineering and band alignment for LT-CFCs. J. Membr. Sci. 2023, 668, 12. DOI: 10.1016/j.memsci.2022.121264.
(34) Lu, Y. Z.; Shah, M.; Mushtaq, N.; Yousaf, M.; Akbar, N.; Arshad, N.; Irshad, M. S.; Lund, P. D.; Zhu, B.; Asghar, I. Semiconductor Heterostructure (SFT-SnO2) Electrolyte with Enhanced Ionic Conduction for Ceramic Fuel Cells. ACS Appl. Energ. Mater. 2023, 6 (12), 6518-6531. DOI: 10.1021/acsaem.3c00442.
(35) Li, Z.; Hu, J. K.; Han, Y. F.; Li, H. F.; Wang, J.; Lund, P. D. Parameter identification and generality analysis of photovoltaic module dual-diode model based on artificial hummingbird algorithm. Clean Energy 2023, 7 (6), 1219-1232. DOI: 10.1093/ce/zkad066.
(36) Kuang, R.; Du, B.; Lund, P. D.; Wang, J. Improving performance prediction of evacuated tube solar collector through convolutional neural network method. Therm. Sci. Eng. Prog. 2023, 39, 16. DOI: 10.1016/j.tsep.2023.101717.
(37) Jing-hu, G.; Yong, L.; Jun, W.; Lund, P. Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology. Energy 2023, 268, 11. DOI: 10.1016/j.energy.2023.126640.
(38) Huang, B. K.; Yang, S. M.; Li, X. X.; Wang, J.; Lund, P. D. Strengthening of melting-solidification process in latent heat storage through sine wave shaped fins. J. Energy Storage 2023, 66, 15. DOI: 10.1016/j.est.2023.107494.
(39) Hu, J. K.; Teng, K.; Li, C. J.; Li, X. P.; Wang, J.; Lund, P. D. Review of recent water photovoltaics development. Oxf. Open Energy 2023, 2, 10. DOI: 10.1093/ooenergy/oiad005.
(40) Hu, E. Y.; Wang, J.; Ma, L. Q.; Yousaf, M.; Wang, F. Z.; Zhu, B.; Yang, W. X.; Lund, P. Phase Evolution and Electrochemical Properties of Nanometric Samarium Oxide for Stable Protonic Ceramic Fuel Cells. ChemPhysChem 2023, 24 (3), 9. DOI: 10.1002/cphc.202200656.
(41) Gong, J. H.; Zhang, Z. P.; Sun, Z. H.; Wang, Y. G.; Wang, J.; Lund, P. D. Thermal and thermo-mechanical analysis of a novel pass-through all-glass evacuated collector tube by combining experiment with numerical simulation. Energy 2023, 277, 8. DOI: 10.1016/j.energy.2023.127630.
(42) Gong, J. H.; Sun, Z. H.; Wang, J.; Lund, P. D. Performance studies of novel all-glass heat pipe evacuated collector tube integrating numerical simulation and experiment method. Sol. Energy 2023, 253, 491-500. DOI: 10.1016/j.solener.2023.02.028.
(43) Yang, S.; Wang, B.; Lund, P. D.; Wang, J. Optimization of Inert Gas Feeding Strategy in a Fixed-Bed Reactor for Efficient Water Splitting Via Solar-Driven Thermal Reduction of Nonstoichiometric CeO2. J. Sol. Energy Eng. Trans.-ASME 2022, 144 (5), 11. DOI: 10.1115/1.4054394.
(44) Xu, J. Z.; Wang, J.; Chen, Y. Z.; Xu, Z. C.; Lund, P. D. Thermo-ecological cost optimization of a solar thermal and photovoltaic integrated energy system considering energy level. Sustain. Prod. Consump. 2022, 33, 298-311. DOI: 10.1016/j.spc.2022.07.011.
(45) Wang, J.; Lund, P. D. Review of Recent Offshore Photovoltaics Development. Energies 2022, 15 (20), 14, Review. DOI: 10.3390/en15207462.
(46) Shah, M.; Lu, Y. Z.; Mushtaq, N.; Yousaf, M.; Rauf, S.; Asghar, M. I.; Lund, P. D.; Zhu, B. Perovskite Al-SrTiO3 semiconductor electrolyte with superionic conduction in ceramic fuel cells. Sustain. Energ. Fuels 2022, 6 (16), 3794-3805. DOI: 10.1039/d2se00643j.
(47) Shah, M.; Lu, Y. Z.; Mushtaq, N.; Rauf, S.; Yousaf, M.; Asghar, M. I.; Lund, P. D.; Zhu, B. Demonstrating the potential of iron-doped strontium titanate electrolyte with high-performance for low temperature ceramic fuel cells. Renew. Energy 2022, 196, 901-911. DOI: 10.1016/j.renene.2022.06.154.
(48) Ma, L. Q.; Hu, E. Y.; Yousaf, M.; Lu, Y. K.; Wang, J.; Wang, F. Z.; Lund, P. Phase structure-dependent low temperature ionic conductivity of Sm2O3. Appl. Phys. Lett. 2022, 121 (10), 7. DOI: 10.1063/5.0104790.
(49) Lund, P. D.; Anderson, C. L.; Figueiredo, M. C.; Mancarella, P.; Neij, L.; Wang, J.; Neenan, J. Introducing Oxford Open Energy and the energy quest. Oxf. Open Energy 2022, 1, 3. DOI: 10.1093/ooenergy/oiab001.
(50) Lu, Y. Z.; Shah, M.; Mushtaq, N.; Yousaf, M.; Lund, P. D.; Zhu, B.; Asghar, M. I. A-site deficient semiconductor electrolyte Sr1-xCoxFeO3-δ for low-temperature (450-550 °C) solid oxide fuel cells. RSC Adv. 2022, 12 (38), 24480-24490. DOI: 10.1039/d2ra03823d.
(51) Lu, Y. Z.; Mushtaq, N.; Shah, M.; Irshad, M. S.; Rauf, S.; Xia, C.; Yousaf, M.; Raza, R.; Lund, P. D.; Zhu, B. Improved self-consistency and oxygen reduction activity of CaFe2O4 for protonic ceramic fuel cell by porous NiO-foam support. Renew. Energy 2022, 199, 1451-1460. DOI: 10.1016/j.renene.2022.09.048.
(52) Lu, Y. K.; Hu, E. Y.; Yousaf, M.; Ma, L. Q.; Wang, J.; Wang, F. Z.; Lund, P. NASICON-Type Lithium-Ion Conductor Materials with High Proton Conductivity Enabled by Lithium Vacancies. Energy Fuels 2022, 36 (24), 15154-15164. DOI: 10.1021/acs.energyfuels.2c03371.
(53) Li, X. X.; Yang, S.; Wang, J.; Lund, P. D. High-temperature two-layer integrated receiver storage for concentrating solar power systems. Oxf. Open Energy 2022, 2, 13. DOI: 10.1093/ooenergy/oiac012.
(54) Huang, B. K.; Yang, S. M.; Wang, J.; Lund, P. D. Optimizing the shape of PCM container to enhance the melting process. Oxf. Open Energy 2022, 1, 10. DOI: 10.1093/ooenergy/oiab006.
(55) Hu, J. K.; Teng, K.; Qiu, Y. D.; Chen, Y. Z.; Wang, J.; Lund, P. Thermodynamic and Economic Performance Assessment of Double-Effect Absorption Chiller Systems with Series and Parallel Connections. Energies 2022, 15 (23), 17. DOI: 10.3390/en15239105.
(56) Hu, E. Y.; Zhao, W. J.; Jiang, Z.; Wang, F. Z.; Wang, J.; Zhu, B.; Lund, P. Unveiling the role of lithium in cerium oxide based ceramic fuel cells employing lithium compounds as the anode. Phys. Chem. Chem. Phys. 2022, 24 (38), 23587-23592. DOI: 10.1039/d2cp02445d.
(57) Hu, E. Y.; Wang, J.; Yousaf, M.; Wang, F. Z.; Zhu, B.; Lund, P. D. Sodium-Doped Samarium Oxide Electrolytes for Avoiding the Lithiation-Induced Interface Degradation of Ni0.8Co0.15Al0.05LiO2 Electrode-Based Ceramic Fuel Cells br. ACS Appl. Energ. Mater. 2022, 5 (11), 13895-13902. DOI: 10.1021/acsaem.2c02540.
(58) Hu, E. Y.; Wang, F. Z.; Yousaf, M.; Wang, J.; Lund, P.; Wang, J. P.; Zhu, B. Synergistic effect of sodium content for tuning Sm2O3 as a stable electrolyte in proton ceramic fuel cells. Renew. Energy 2022, 193, 608-616. DOI: 10.1016/j.renene.2022.04.152.
(59) Gong, J. H.; Wang, J. Z.; Xiaoli, H.; Li, Y.; Jian, H.; Wang, J.; Lund, P. D.; Gao, C. Y. Optical, thermal and thermo-mechanical model for a larger-aperture parabolic trough concentrator system consisting of a novel flat secondary reflector and an improved absorber tube. Sol. Energy 2022, 240, 376-387. DOI: 10.1016/j.solener.2022.05.044.
(60) Du, B.; Lund, P. D.; Wang, J. Improving the accuracy of predicting the performance of solar collectors through clustering analysis with artificial neural network models. Energy Rep. 2022, 8, 3970-3981. DOI: 10.1016/j.egyr.2022.03.013.
(61) Chen, Y. Z.; Xu, Z. C.; Wang, J.; Lund, P. D.; Han, Y. F.; Cheng, T. H. Multi-objective optimization of an integrated energy system against energy, supply-demand matching and exergo-environmental cost over the whole life-cycle. Energy Conversion and Management 2022, 254, 12. DOI: 10.1016/j.enconman.2021.115203.
(62) Chen, Y. Z.; Xu, J. Z.; Wang, J.; Lund, P. D.; Wang, D. W. Configuration optimization and selection of a photovoltaic-gas integrated energy system considering renewable energy penetration in power grid. Energy Conversion and Management 2022, 254, 15. DOI: 10.1016/j.enconman.2022.115260.
(63) Chen, Y. Z.; Xu, J. Z.; Wang, J.; Lund, P. D. Optimization of a weather-based energy system for high cooling and low heating conditions using different types of water-cooled chiller. Energy 2022, 252, 14. DOI: 10.1016/j.energy.2022.124094.
(64) Chen, Y. Z.; Li, X. X.; Hua, H. L.; Lund, P. D.; Wang, J. Exergo-environmental cost optimization of a solar-based cooling and heating system considering equivalent emissions of life-cycle chain. Energy Conversion and Management 2022, 258, 14. DOI: 10.1016/j.enconman.2022.115534.
(65) Chen, Y. Z.; Hua, H. L.; Xu, J. Z.; Wang, J.; Lund, P. D.; Han, Y. F.; Cheng, T. H. Energy, environmental-based cost, and solar share comparisons of a solar driven cooling and heating system with different types of building. Appl. Therm. Eng. 2022, 211, 12. DOI: 10.1016/j.applthermaleng.2022.118435.
(66) Chen, Y. Z.; Hu, X. J.; Xu, W. T.; Xu, Q. L.; Wang, J.; Lund, P. D. Multi-objective optimization of a solar-driven trigeneration system considering power-to-heat storage and carbon tax. Energy 2022, 250, 12. DOI: 10.1016/j.energy.2022.123756.